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Abstract

Imaging photoplethysmography (iPPG) is a camera-
based approach for the remote extraction of the blood vol-
ume pulse (BVP) most commonly applied to facial video
recordings. The major challenges of this promising tech-
nique are the low amplitude of BVP signals and their
superposition with artifacts as well as physiological and
non-physiological movement induced distortions. We ad-
dressed this complexity with a 3D convolutional neural
network, which we called DeepPerfusion, to improve BVP
extraction from iPPG. Our approach is based on the idea
of enabling DeepPerfusion to learn the extraction of the
BVP from videos by understanding their relation to the
ground truth signals. First results show that DeepPer-
fusion outperforms state-of-the-art algorithms for remote
BVP extraction demonstrating a mean absolute error of
0.66 beats per minute (up to 60% improvement) regard-
ing the BVP based pulse rate estimation for 21 randomly
chosen held out test subjects of the UBFC dataset.

1. Motivation

Imaging photoplethysmography (iPPG) enables the re-
mote measurement of the blood volume pulse (BVP) using
RGB cameras. Usually facial regions are recorded because
of the high superficial blood circulation. Due to its simplic-
ity, this technique offers high potential to become an easy-
to-use and widely available diagnostic tool. So far, mainly
the pulse rate and breathing rate were measured [1,2]. The
most challenging problem is the low signal amplitude of-
ten affected by poor or altering lighting conditions and ar-
tifacts (e.g. caused by head movement relative to the cam-
era). Additionally, the signal is superimposed by complex
movements caused by the BVP and the contraction of the
heart itself. Therefore, it is reasonable to encounter the
given complexity with a neural network based approach.

As of today, several deep learning based approaches ex-
ist to extract the BVP signal from facial video recordings.
McDuff et al. proposed a 2D convolutional neural network
(2D-CNN) trained on the extraction of the BVP signal’s

first derivative from the temporal normalized frame differ-
ence [2]. A first approach using a simple 3D-CNN was
introduced by Bousefsaf et al. [3] where the network was
trained purely on synthetic data.

We assumed a specialized 3D-CNN to be particularly
suitable for capturing the complexity which we explain in
more detail in section 2.3. Thus, we designed a new neu-
ral network architecture, which we called DeepPerfusion,
and compared its performance to state-of-the-art algorith-
mic approaches for remote BVP extraction.

2. Methodology

2.1. Datasets

We used three datasets for training, validating and test-
ing our approach comprising of two datasets acquired
at our institution (named CardioVisioIBMT and Cold-
StressStudy) and a publicly available dataset (UBFC
dataset [4]). The datasets of our institution were used for
the training procedure whereas the UBFC dataset was pri-
marily used to test our approach. Each dataset comprises
of uncompressed facial RGB video recordings and a syn-
chronized BVP signal, i.e. the ground truth. The specifica-
tions of the datasets are summarized in Table 1.

2.2. Preprocessing

At first, every video and the according ground truth sig-
nal were resampled at 30 samples per second to simplify
the subsequent processing steps. Then, we extracted the
region of interest (ROI), i.e. the whole facial region, with
the use of a state-of-the-art face detection algorithm (from
[5]). The next preprocessing elements were essentially
based on the dichromatic reflection model (DRM) used by
Wang et al. [1], which defines the time-varying color com-
ponents (red, green and blue) contained in ~Ck(t) of the
k-th skin pixel in an image as

~Ck(t) = I(t) · (~vs(t) + ~vd(t)) + ~vn(t). (1)

Where ~vs(t) and ~vd(t) describe the specular and dif-
fuse reflection proportions, respectively. Sensor quanti-



Table 1. Specifications of the datasets that were used for training, validation and testing. Ground truth signal was aquired
by PPG sensors measuring the blood volume pulse. The CardioVisioIBMT dataset comprises of two recordings per subject
with different resolution and frames per second. Due to different cardiovascular stressors, the used datasets cover a wide
range of signal variations. The split proportions of the last column refer to the subjects, i.e. none of the test subjects were
seen by the network during training or validation.

Dataset
Number

of
subjects

Mean
video
length

(minutes)

Color
channel
bit depth

Resolution
(pixels)

Frames
per

second

Ground
truth

sample
rate in

Hz

Percentage
used for

training/
validation/

testing

CardioVisioIBMT 19 30 12
320×420 100

1000 80/20/0
640×840 30

ColdStressStudy 41 30 12 320×420 100 1000 80/20/0

UBFC dataset [4] 42 1 8 480×640 30 30 25/25/50

zation noise is taken into account with ~vn(t). The lu-
minance intensity is expressed by I(t). We assumed all
time-dependent components in Equation 1 to have approx-
imately a recording setting specific constant value regard-
ing a sufficient video interval length and small movement
of the recorded surface. Therefore, we split each video into
overlapping video segments of two seconds length and di-
vided each pixel by its temporal mean value to minimize
the dependency to the recording setting specific conditions,
e.g. the light source characteristics. We considered the
temporal normalization step as being of high relevance re-
garding the generalization performance of our approach.
We chose the proposed interval length to guarantee the
presence of at least one cardiac cycle. To reduce the in-
fluence of camera sensor induced quantization noise, we
applied a gaussian filter and resized the videos to a reso-
lution of 60 × 60 pixels using bilinear interpolation. Sub-
sequently, each pixel was centered around its mean and
scaled by its standard deviation to accelerate the learning
procedure.

The ground truth BVP signals were low-pass filtered us-
ing an 8th-order Butterworth filter with a cut-off frequency
of 10Hz. Since the ground truth data for each dataset was
recorded with different hardware, the signal intensities also
vary in different ranges. To facilitate the learning process
and improve the generalization ability, we centered each
ground truth signal around its mean value and scaled it by
its standard deviation.

The last step consisted of the input and output gener-
ation for the neural network. From each video segment
we extracted seven frames and the according seven sam-
ple points from the ground truth. The network was then
trained on predicting the fourth ground truth sample point,
i.e. the middle sample point, from the seven input frames.
Figure 1 summarizes the preprocessing steps.
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Figure 1. Preprocessing steps to generate the input data
for DeepPerfusion. Subject images (taken from [4]) are
blurred to preserve privacy.



2.3. DeepPerfusion network architecture

We chose a 3D-CNN because of its superiority regard-
ing the extraction of information from a 3D input-space.
Here, two dimensions are used by an image, i.e. a 2D in-
put matrix (ignoring color channels). The third dimension
is represented by the time, i.e. a sequence of images. We
considered the third dimension being highly relevant be-
cause of the following assumptions: (1) it should allow to
account for previous and future movement identification
in the input sequence and (2) it should enable the search
for specific signal patterns. In our case, the network was
supposed to search for BVP signal information.

While there exist many 2D-CNN architectures, this is
not the case for 3D-CNNs. We built our network archi-
tecture in the well-known style of VGG-Net which is orig-
inally used for image classification [6]. Figure 2 shows
the structure of our so-called DeepPerfusion network. We
used three convolutional stages followed by a fully con-
nected stage. Overall, DeepPerfusion consists of roughly
five million trainable parameters.

Because we expected the BVP signal in small surround-
ing areas of a maximum convolution output value to be
important as well, we chose average pooling instead of the
more commonly used maximum pooling layers so that the
pooling layer output composes not only of major but also
of minor activations. For the second last layer, we im-
plemented a tanh activation function as we expected its
smoother non-linearity to allow a higher flexibility regard-
ing the BVP signal construction of the last layer, i.e. the
network output.

2.4. Training, validation and testing proce-
dure

We split the datasets into three parts: training, validation
and testing partition. The proportions are indicated in Ta-
ble 1 and are related to the number of subjects. We trained
DeepPerfusion with a batch size of 128 using the ADAM
optimization algorithm combined with a learning rate of
0.0001. The network was trained on the minimization of
the mean of squared errors, i.e. the mean of the squared de-
viations of the network’s output to the preprocessed ground
truth BVP signal. For our study, we used the TensorFlow
package in conjunction with the Keras backend.

2.5. Evaluation

We compared our results to state-of-the-art remote BVP
extraction algorithms POS and CHROM from Wang et
al. [1] and De Haan et al. [7]. Both algorithms re-
quire an additional skin detection step. We implemented
POS, CHROM and the skin detection based on the iPhys-
Toolbox [8].
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Figure 2. The network architecture of DeepPerfusion. The
network has an overall capacity of roughly 5 million pa-
rameters. Abbr.: Rectified linear unit (relu), convolution
layer (conv).

The computed remote BVP signals passed the same
postprocessing which consisted of two steps. At first, the
signals were upsampled at 125Hz using peace-wise cubic
hermite interpolation. Subsequently, a 2nd-order Butter-
worth filter was applied with lower and upper cut-off fre-
quencies of 0.6 and 8.2Hz. These boundaries were cho-
sen based on the relevant physiological information we ex-
pected in the BVP signal. We extracted the pulse rate of
remotely acquired BVP signals and ground truth BVP sig-
nals from the frequency domain using a sliding 10 seconds
window with a stride of one second.

To compare our results, we used four different metrics
related to the quality assessment of pulse rate extraction:
root of the mean of squared errors (RMSE), mean of abso-
lute errors (MAE), pearson correlation coefficient (r) and
pulse rate accuracy (PR ACC). PR ACC was defined as
the ratio of correctly acquired pulse rates. Following IEC
60601-2-27 (originally for ECG heart rates), a pulse rate
was deemed erroneous if the absolute difference between
the remotely acquired pulse rate and ground truth pulse
rate exceeds the greater of either 5BPM or 10% of the
ground truth pulse rate. Additionally, we calculated the
signal-to-noise ratio (SNR) according to de Haan et al. [7]



Table 2. Results of metrics assessing the remotely ac-
quired pulse rate for POS, CHROM and DeepPerfusion
for the 21 held out test subjects. Standard deviations,
computed on an inter-subject basis, are provided in brack-
ets. Red color indicates the best result for a given metric.
Units: MAE and RMSE in BPM, SNR in dB, r and PR
ACC without unit.

Metric DeepPerfu-
sion POS CHROM

MAE 0.66 (0.57) 3.56 (9.19) 1.66 (5.34)

RMSE 1.11 (1.10) 5.74 (11.84) 2.28 (6.39)

r 0.94 (0.14) 0.83 (0.30) 0.93 (0.16)

PR ACC 0.99 (0.03) 0.93 (0.22) 0.96 (0.16)

SNR 3.37 (2.31) 2.92 (3.79) 3.09 (3.25)

for pulse rates from 36 up to 240 beats per minute (BPM)
which equals 0.6 - 4Hz. In contrast to [7], we enlarged
the upper SNR frequency boundary from 4Hz to 8.2Hz to
avoid systematic exclusion of the first harmonic for pulse
rates higher than 120BPM.

3. Results and discussion

Table 2 shows the results of POS, CHROM and Deep-
Perfusion for the 21 held out test subjects of the UBFC
dataset. DeepPerfusion exhibited an improved perfor-
mance in comparison with POS and CHROM which holds
true for all analysed metrics. Compared to CHROM,
which performed second best, the MAE and the RMSE are
reduced by 1.00BPM (60% improvement) and 1.17BPM
(51% improvement), respectively. According to PR ACC,
DeepPerfusion was capable to detect additional 3% of the
pulse rates correctly compared to CHROM while having a
lower standard deviation in the test set.

We observed that POS and CHROM performed poorly
on a small number of subjects naturally leading to a worse
overall metric which can also be seen in the significantly
larger standard deviations compared to DeepPerfusion.
The reason for this remains unclear as we could not find
significant abnormalities compared to other subjects espe-
cially regarding the most critical step of skin detection.

4. Conclusion

Our results demonstrate the considerable enhancement
of using a specialized deep learning based approach for
BVP extraction from facial video recordings. In the next
step, we will test DeepPerfusion on a larger dataset exhibit-
ing a larger variation regarding subject age and skin tone.
Further, we will analyse the impact of DeepPerfusion be-

ing pre-trained onto the dataset that is also used for testing
to answer the question of its generalization performance on
new - i.e. never seen - recording settings. Given that our
final objective is the beat-to-beat and pulse shape analysis
using remotely acquired BVP signals, we will investigate
experiments to further improve the network performance
especially towards a higher SNR.
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